
UNCLASSIFIED

AD 296787

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



AESESD TD R6 97

4

A 1

FE 2



, 
4 A /'

2 '' ''' ~ . t ~ j..
4

yC 'k- t , t ~ s g ( . ' ~ I A . ,1K
S ~ l. oft r4 1 r' '

~'~' 4*
11

y~M tC'r
4"M

t+ 4~~ l~ '4 4 4 rI

-- I 4n 4 ; #

'VV

ik



Best
Available

Copy



Unclassified
____ ____ ____ ____284

~AFESD - TDR'-62- g,,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

OPTIMUM INCORPORATION OF EXTERNAL OBSERVATIONS

WITH A MARINE INERTIAL NAVIGATION SYSTEM

D. 1. SAKPJSON

Group 22

TECHNICAL REPORT NO. 289

30 NOVEMBER 1962

LEXINGTON MASSACHUSETTS

Unclassified



ABSTRACT

When a marine vessel is used as a platform for tracking space vehicles, the accuracy

of the tracking is critically limited by errors in the ship's estimated position and ori-

entation. These reference data are usually estimated by combining the output of an

inertial navigation system with additional external position, velocity and/or orien-

tation measurements. To meet stringent accuracy requirements for this estimation,

optimum statistical computation procedures for combining the data are required.

This report develops a discrete-time, linear model for the error propagation in an in-

ertial navigation system. This model makes it possible to derive an optimum recursive

data processing procedure for combining the inertial system output with the external

fixes. A recursive formula for the minimum-mean-square error in estimated position,

velocity and orientation is also obtained. The various formulas are directly appli-

cable to broad classes of inertial navigation systems and external measurements.

A general discussion is provided on the computational problems associated with both

actual data processing and the performance of system-error analyses.
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OPTIMUM INCORPORATION OF EXTERNAL OBSERVATIONS

WITH A MARINE INERTIAL NAVIGATION SYSTEM

I. INTRODUCTION

The problem that motivated the analysis contained in this report is connected with the use

of marine vessels as platforms for devices used to track missiles, satellites and interplanetary

probes. One of the major difficulties associated with these marine-stationed tracking platforms

is the degradation of the usefulness of the tracking data caused by uncertainties as to the ship's

latitude, longitude and orientation with respect to north and vertical. Techniques that can be

used to determine these reference data for a marine vessel can be subdivided into two basic

classes. In the first class is the use of direct measurements such as star fixes, tracking of

satellites, shore-based electromagnetic navigation aids and underwater sonar beacons. In the

second class, consisting of direct navigational procedures, the technique of prime interest is the

inertial navigation system.t These two methods, external measurements and inertial navigation

systems, have different performance characteristics. An inertial navigation system is capable

of high accuracy for short periods of time, but the errors can build up to an unacceptable level.

External measurements provide information only at the time of measurement, and any single

measurement might not be accurate enough to meet requirements or might not give enough infor-

mation to completely specify the desired aspects of the vessel's position, velocity and orienta-

tion. Because of economic as well as physical limitations, the required accuracies are not al-

ways achievable by 'merely improving the inertial navigator or the basic measurement systems.

When combined in an efficient manner, however, the two techniques complement each other

and can possibly provide a resulting capability far superior to either single procedure. The in-

ertial navigator allows the use of incomplete external measurements taken at different times,

and statistical smoothing of the random errors in the external measurements can be achieved.

In turn, the external measurements help control the error build-up inherent in the inertial nav-

igation system. Since extensive computation facilities for data processing are usually available

to the marine-stationed tracking platform, one can use optimum data processing techniques for

combining external measurements with the data obtained from an inertial navigation system to

provide a best estimate of a ship's position and orientation. Knowledge of such optimum compu-

tation procedures also provides answers to such related operational questions as: What external

measurements are to be taken, at what time, and in what combinations to provide the most effec-

tive results? When can inexpensive external measuring devices be combined with an inexpensive

inertial navigation system to provide performance characteristics competitive with far more

tThe inertial navigation system could be considered as using external measurements in that it relies on gravita-
tional forces. However, the dichotomy is useful for the sake of exposition.



expensive inertial navigation systems? If underwater sonar beacons are being employed, how

should they be placed and in what pattern about them should the marine vessel sail?

This report develops a theory and derives explicit formulas that provide answers to the above

questions. The results are general in nature and thus are applicable to problems beyond those

that were of interest initially. A discrete-time model for the error propagation of a marine in-

ertial navigation system is developed and, on the basis of this model, an optimum method for

combining the external measurements with the inertial navigation system is derived. The opti-

mum technique provides a reasonable and workable method of data processing, but even if re-

strictions prevent its explicit use, the theory provides a valuable standard of comparison, as

well as a good starting point for modifications. The derivation of the data processing procedure

also includes derivation of formulas that determine how the various errors in the inertial naviga-

tion system and external measurements are propagated through the optimum data processing tech-

nique. These formulas thus provide a very powerful tool for comparing and evaluating the effec-

tiveness of different external measurement and inertial navigation system configurations.

Explicit formulas are provided, but, because of the inherent complexity of the error behav-

ior of inertial navigation systems, closed-form solutions are usually not possible. The formulas,

however, are directly solvable on a digital computer (some analog equipment could also be used

if desired) by the use of straightforward techniques. For example, the formula governing the er-

ror propagation in time is a nonlinear recursive equation whose solution can be calculated di-

rectly in time from known initial conditions. Since the necessary computer programs have not

been written, no explicit numerical results are included in this report.

The material in this report assumes familiarity with inertial navigation systems; therefore,

the treatment of the systems themselves, although mathematically complete, is very abbreviated.

The development of the theory for the optimum techniques is more expository, but assumes a

basic knowledge of random variables and stochastic processes.

II. GENERAL DISCUSSION

Because of the technical nature of the theory and formulas to be developed, it is appropriate

to preface the actual derivations with a general discussion of the basic assumptions and methods

of analysis to be used. The remainder of the report (Secs. III, IV and V) will be of interest pri-

marily to those readers who wish to employ the general theory or use the explicit formulas to

solve particular problems.

The model of the inertial navigation system to be considered includes:

(a) The possible incorporation of a velocity log for measuring the vessel's
velocity and the effect of errors in these measurements.

(b) The effect of errors due to, gyro drift and accelerometer bias.

(c) Incorporation of an extremely broad class of external measurements.

(d) The propagation of all seven components of error, two location coordinates
and their associated velocities and three attitude angles. (The term "posi-
tion estimation," as used throughout the remainder of this report, actually
refers to all seven quantities, not just the location of the ship on the sur-
face of the earth.)

Section III develops a discrete-time model of the error propagation in the inertial navigator.

In deriving the error model, it is assumed that the other accelerations acting on the platform are

small compared with the acceleration of the earth's gravitational field and that the velocity of the
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ship with respect to the earth's surface is small compared with the velocity of the earth's sur-

face with respect to some inertial reference. We assume that the velocity-log errors and

accelerometer-bias errors (additive errors in the accelerometer output) can be represented by

continuous, stationary, zero mean, Markov random processes. Further, it is assumed that the

values of the associated correlation functions for time shifts larger than the time between fix ob-

servations will be very small compared with the values for zero time shift. Stationary first-order

Markov processes are assumed for the gyro drifts, but here it is not assumed that the correla-

tion times are small with respect to the time between fix observations. The linearized model

for the error propagation is of the form

x(t + T) = -D(t + T)x(t) + w(t) (1)

in which T is the time between external measurements. The column vector x(t) is a

ten-dimensional vector, the first seven entries of which are the seven error variables while

the last three are variables that are the discrete-time equivalent of the gyro-drift inputs (equiv-

alent in the sense that they produce the same response at all sample times as the original con-

tinuous gyro-drift inputs). The column vector w(t) is also a ten-dimensional vector, the first

seven entries of which are inputs that directly represent the effects of accelerometer bias and

velocity-log errors. The last three entries of w(t) are inputs that, when passed through a first-

order system, result in the equivalent gyro-drift inputs (the last three entries of x). The 10 X 10

matrix 4' thus includes both the transition matrix of the error-propagation system and the tran-

sition matrix of the 1t-order system used to generate the three equivalent gyro-drift inputs.

The input w(t) is white in the sense thatf

Elwtwt+kT} = 0 k = integer; k # 0

where the superscript T denotes transposition. The matrix 0 is a constant for picket ship op-

eration (operation confined to a distance of several miles from a fixed point) and varies with lo-

cation for normal marine operation.

Section IV treats the estimation problem. For the external measurements, we assume a

rather general form

r(t) = F[q(t)] - v(t)

in which the vector r is the observation taken, q(t) is the seven-vector giving the true quantities

associated with the inertial navigator operation, and v(t) is the measurement error. This error

is assumed to have zero mean and to be white in the sense that

E{vtVTkT} = 0 k = integer; k # 0

The output of the inertial navigator is y(t) q(t) + x(t). The variables used by our over-all sys-

tem to estimate xt are

z(r) = fy(,r) I - r(r)

H(r)x(7-) + V(T) r = t - kT, k = 0,1,2 . (2)

tThe symbol x(t) denotes a sample function of a random process (a function of time that is the result of a single
realization, or experiment) while the symbol xt denotes a random variable (an observation made at a single fixed
time that is a function of the realization, or experiment observed). Thus, a time average is defined only for x(t)
and a statistical average only for xt .
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in which we have expanded F[(T-)1 in a Taylor's series about y(-) = q(-); that is,

H ) 
saFi[s( )

ij as - s(T) y(T) = q(r)

Thus, the external measurements are also linearized.

The use of a linearized model such as that represented by Eqs. (1) and (Z) is justified in most

problems of interest, since we are primarily concerned with highly accurate systems having small

errors. Of course, in any particular application, one must always determine whether or not the

linearized model is a valid representation of the important aspects of the physical situation.

The estimation scheme developed in Sec. IV is linear; that is, the optimum estimate is ex-

pressed as

_(t) = CkZ(t - k)

in which the sum extends over all measurements. The reasons for using a linear estimation

scheme are twofold:

(a) The solution to the linear estimation problem is tractable.

(b) It is unrealistic to assume that we would have good estimates of more than
second-order statistics; using only second-order statistics, the linear es-
timate is optimum.t Moreover, it seems reasonable to assume that the
sources generating navigator errors would be Gaussian. Since the error-
propagation system is linear to a good approximation, the processes that
we are trying to estimate may be assumed Gaussian to a good approxima-
tion. Under these conditions, the optimum mean-square estimator is a
linear estimator.

The solution to the estimation problem is similar to Kalman's recursive formulation The re-

sults are:

(a) A recursive formula that provides the optimum data processing procedure.

(b) A recursive relation for determining the covariance matrix of the error
in estimating the position of the marine vessel.

The recursive formulations given in Sec. IV are nonlinear and, for almost all situations of

interest, require machine solution. Sec. V discusses the computational steps necessary to carry

out a machine solution.

One final point: the formulas to follow are complex because of the generality of the assumed

model. In any explicit application, extensive simplifications may be possible. Similarly, the

analysis itself can be extended in various directions by using the same basic techniques employed

in this report. To cite just one example, the theory is directly extendible to external-fix meas-

urement errors that are correlated in time and that have a nonzero bias component.

III. MODEL OF THE NAVIGATOR ERROR PROPAGATION

In this section we proceed directly to the problem of deriving a model for the error propaga-

tion in a marine inertial navigation system. The reader unfamiliar with inertial navigation sys-

tems may wish to consult the literature, since certain of our analyses are succinct rather than

t We consider the optimum or best estimate of position to be the one that simultaneously minimizes the variance
of each component of position. It is shown in Sec. IV that this estimate also yields an ellipsoid of concentration1

that falls inside the ellipsoid of concentration of any other estimate.
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expository. There is at least one textbook which covers the general subject, although the author

found an unpublished set of notes 4 to be somewhat more informative. The idea behind an inertial

navigation system is quite basic. A gyro-stabilized platform is used to orient two accelerometers.

These sense components of acceleration in the east and north directions, and these accelerations

are integrated twice by a computer to obtain position. The computer also computes the torques

necessary to keep the platform orientation north and east as the earth rotates and the ship moves.

Many marine inertial navigation systems also include velocity-log feedback in which estimates

of the vessel's velocity, obtained from an electromagnetic velocity meter, are fed into the system

to provide damping of certain errors. Although such velocity information could be considered ex-

ternal measurements, the analyses to follow include velocity-log feedback as an intrinsic part of

the inertial navigation system. It will be seen, however, that this approach greatly complicates

the equations. The possibilities of treating the velocity-log data as external measurements are

briefly discussed in Sec. V.

A. Definitions of Symbols and Coordinate Systems

Throughout this report, vector quantities are indicated by underlining. The conventional

latitude-longitude system is used; that is,

X = degrees north (+) latitude

and

A = degrees east (+) longitude

are the variables describing the ship's position. The operation of the navigation system will be

based on a set of coordinates whose origin is at the center of the earth and whose z-axis passes

through the center of the ship. These coordinates will be oriented with the x-axis pointed north

and the y-axis pointed west. In the remainder of this report, this coordinate system will be re-

ferred to simply as the system coordinates. We will also need to distinguish between three such

sets of system coordinates:

(1) x, y, z: The set of system coordinates based on the true" position of the ship.

(2) xc, y,, zc: The set of system coordinates whose orientation is based on the
position of the ship calculated by the navigation system computer.

(3) xp, yp, zp: The set of system coordinates aligned with the orientation of the
stable platform, i.e., x parallel to x accelerometer.

p
The difference between the last two sets of coordinates is due to the curvature of the earth and

the existence of error in the navigator-calculated position.

Note that these three coordinate systems are all related to one another by rotational transfor-

mations. A rotational transformation is specified by three angles. If all these angles are small

and sines are approximated by the angle and cosines by one, then the rotational transformation

can be (approximately) specified by a linear transformation in which these angles appear as coeffi-

cients. We assume that our error angles are small. Thus, the disparity among the three coor-

dinate systems can be described by the vectors:

= vector error angle between the true axes and platform axes,

= vector error angle between the true axes and computer axes,

= vector error angle between computer axes and platform axes,

= + 60.



Each of these vector quantities has three components; e.g., j has the components x, y IzO

representing rotations about the x, y, and z axes, respectively.

We also introduce the following quantities:

A = acceleration sensed by the accelerometer.

R = position vector of the vehicle as measured in a coordinate system aligned
with x, y and z whose origin is at the center of the earth, i.e., the system
coordinates. Note that x = y = 0, z - R, R = earth's radius = RI.

i = velocity vector of vehicle in the system coordinates. Note that R - 0.

gm(R) = mass attraction of the earth at position R.

_w = angular velocity of system coordinates relative to an inertial set of coor-
dinates, that is, a set of coordinates stationary with respect to the fixed
stars.

0 = angular velocity of earth.

U = frequency of earth's angular rotation about the North Pole = I.
4A = error in latitude = Xc - Xactual, in which X is the computed latitude. Note

that Ax = RAX, &y = -R cos A A. c

AX = derivative of AX with respect to time.

6V x = error in x-component of ship's velocity log (an electromagnetic (actually
magnetohydrodynamic) device for measuring the ship's velocity].

K = feedback from velocity log (units of inverse seconds).
8 Ax = bias error in the x-component of the accelerometer output; that is, 8Ax is

a random process which constitutes the additive error in the x-accelerom-
eter output.

Ex = x-component of gyro drift.

Similar definitions apply to 6Vy, 6Ay, cy and cz '

In the next two sections we derive the differential equations governing the error propagation

in the navigator. These equations can be divided into two groups. The first group is the set of

differential equations for &A and AA in which 4 x0 -y and 0z appear as driving terms. The second
x y

group of equations describes the propagation of the terms x' *y and 0z"

B. Equations Governing the Propagation of ,a and AA

Recalling the method of operation of the inertial navigator, we see that the fundamental equa-

tion describing the system is

fd 2R\
-- = Id /j -- gm(R) (3)

in which I indicates that the differentiation is carried out with respect to an inertial set of coor-

dinates. But,. using the general expression relating differentiation in two coordinate systems

whose relative motion is only rotation, we obtain

(d1)i R+wXR , (4)

in which w X R is the cross product of the vectors w and R. Also,

1d2) = [jdt ,IJSys or+ x( t) I

-- / t2Ss Coord 
+ (( (5)



Substituting Eq. (4) into Eq. (5), we obtain

d - _) ] S y s C o o r d + 
+ X ( i + w X R )

R + 2w xit+ w x(w_ XR) + xR (6)

Substituting Eq. (6) into Eq. (3) and recalling that ft 0, we obtain

_A=-gm(R) + w X(wXR)+w XR (7)

Now,

x=y=0, z=R

Further,

w =(i+A) cosA, co = w =(D+A) sink
x yz

Thus Eq. (7) becomes

Ax = RX + R(92 + A)? coSA sinX-gx(R)

Ay = -R cosXA + ZR (fl + A) X sinX- gy(R) (8)

The computation scheme used by the computer is to calculate the terms

R(a + A)2 cosX sinX, gx(R), ZR(fl + A) X sinA, gy(R)

and subtract them from the output of the accelerometer, thus obtaining iR and R cos XA. These

are integrated twice to calculate position. The velocity-log data is incorporated into a simple

feedback loop to damp certain errors. The block diagram of the navigation system is shown

in Fig. 1.

Writing out the equations for the block diagram, we have the equations which govern the er-

ror propagation:

R( +Ai) =RX+R [(Q + ) 2 sinX cos-(f +A + 6A) sin(?+ A) . cos(X +AX)J

-KRAX + K6V x - (0y A - CzAY) - [gX(R)- gx (R + AR)] + 6A , (9)

-R cos (A + ) + 'A) = -RA cosA + ZR [(fl + A) A sink - (0Z + A + AA) (A + Ax)

X sin (A + AX)J + KR cos( + A) + AA)-KR cosX [A + (V y)/R]

(zAx - AZ) + [gy(R) - gy(R + D-) + 6Ay (10)

We assume that AA << I and AA << i; hence,

sin(X + AX) - sinA + AX cos X,

cos (X + AX) t cosX- AX sinX.

Now we assume that the magnitude of the earth's gravitational attraction at sea level is known

for the region of operation. If this is so, then direction is the only unknown quantity, and

(-j(R + AR) -gAR

7
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Hence,

_gx1_j) + gR +__AR) = gA (Ii)

-gy(R) + gy(R + AR) = -gAA (12)

It should be noted that we have assumed a spherical earth. Although the earth's ellipticity

cannot be ignored in the actual operation of the navigation system, the manner in which it affects
error propagation is secondary and will be ignored. Similarly, for marine operation, we can

make the further assumptions:
S2>> , n>>

A X A , KA and RA are negligible with respect to g (13)

We also note that

Q 2 w 1.34 cycles/sec 80 cycles/sec

hence,

0 2 << ( 141

We also assume that A A and &A are of the same order of magnitude, and that 0 x, 4y and Oz are

all of the same magnitude. If we apply this assumption and the approximations (11) through (14)

to Eqs. (9) and (10), we obtain, after dropping second-order terms,

+ 2CW ZA+ KA + i AA= K 6A x
X+ 2CsAA + KA +wZAX= 6V + - 1y , (15)22 K 6A

AX + + w &A --KVy- _ + x ( 16)

in which

4o = Schuler Frequency =

W2 = C 2Q W i = CI if

Ci = cosA

C = sink2

If we are considering picket ship operation, then C and C are constant and our error propaga-

tion is determined by a set of linear differential equations with constant coefficients. For usual
marine use we have linear differential equations with coefficients that vary with position.

The quantities 4, and 4, act as drives to Eqs. (15) and (16). We must next write the equations
that determine the propagation of the error angle 4,.

C. Equations Governing the Propagation of 4

The derivations of this section follow closely those of Kachickas 4 To start, let us recall

that we have defined the three sets of coordinate axes:

9



x, y, z: true position coordinate axes

xp, y , : platform coordinate axes

x c'Yc' Zc: computer coordinate axes

All three coordinate axes have their origins at the true position of the ship, but the three axes

are not perfectly aligned with one another.

Let

x denote an arbitrary vector in the x, y, z system

x denote the same vector in the xpI y az system
-p p p
2c denote the same vector in the xc0 yc' Zc system

Then, to a first-order approximation,

x =Ox and x =Ox-p --- c -

in which

0z -- y1 6e -6Ey

= -x , e= -6 x

(Py - Px 1 
6 0y - 6E)x

We have previously defined

-_ y y6 6ey

Now, by definition,

g W =c+q . (17)
-p - -

The platform velocity may also be expressed in terms of the gyro drift c and the angular

velocity -- c' which, according to the computer calculations must be applied to the platform to

maintain its north, east, up orientation. In terms of the true coordinates, this angular velocity

is

-c +

Hence,

to



Aft

p 
-c

:(e )c + £ (t1

By using the given expressions for 0 and e and noting that, to a first-order approximation,

1 -60 60
z y

O -  6 0 60 -- 1

--y 0x

we obtain

w=w +($-6O) Xw +C+(2XE (19)
-p -c c _ _

Now, again by definition,

W =W + 60 (20)

Substituting Eq. (20) into Eq. (19) and ignoring second-order terms, we obtain

a+ +e+(V-60) xE (21)

By equating this expression to Eq. (17) we obtain

or

+ W x C :(22)

Expanding Eq. (22) and substituting in the expressions for Wx' w and w given following
x give

Eq. (7), we obtain

0x +  - (0+A) CZ y=x

4y + Cz(1 + A) 0x - Cl(a + A) Oz = ey

'z + C2 l + ) 0y- A*x x

If we ignore A and i with respect to f0 and assume that ' y and are of the same magnitude,
x y

the above equations become

Ox- Wzy = ex (23)

4 y + WZx - 41 z :ey (24)

* - + w20y = 4 x- (25)

in which

W2 = C2D a W = CI

it
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D. Complete Error Propagation Dynamics

The five equations (15), (16), (23), (24) and (25) completely describe the propagation of errors

in the navigation system. Our first objective will be to obtain the transfer functions and impulse

responses relating AA and AA to the various inputs. This can be accomplished by first drawing

the flow graph expressing the five equations:

K 6A
AX- +2C1W 2 A + KAX +wAXR6V + [Eq. (15))

A A -2-+KAA+wAA 6V +A -y[Eq. (16)]C1  s RC1  y +

20y =e [Eq. (23)]

+ W2 J-w 4  (Eq. (24)]

z + '2Zy Ex [Eq. (25)]

This flow graph is shown in its original form in Fig. 2 and in reduced form in Fig. 3; the details
of the reduction are omitted.

In order to proceed further, we must factor the denominator term D, which appears in the
transfer functions in Fig. 3:

D =(S2 + 2)2 [(S 2 + KS + w 2
2 -4w2s 2 ]

2 22 22
(S 2 + 2 )2 [(S 2 + KS + 1.0821 w 2) (S2 + KS + 0.9241 )] (26)

Now, from this we could obtain the necessary transfer functions directly. The resulting expres-

sions, however, would be extremely unwieldy. For this reason we consider approximating D by

2 2 2 2D -(S2 + nZ) (S? + KS+ s)  (27)

In order to estimate the error involved, consider the time-response terms that would result from

each expression. From Eq. (26) we would obtain terms of the form

cos (ft + e0) , exp[- w st] cos (q1.082 - C2 wst + 02)

and
exp[-w st] cos (FO.9241 - C2 w st + e 3 )

in which

K
2w

From Eq. (27) we would obtain terms of the form

cos(nt + 01) , exp[-w st] cos (k1- t2 W t + 0')
I s 2

and

exp-w st] Wst cos(q 1-z2 Wst + e)

13



Now, cosA- cos B = 2 cos i/2 (A- B); hence, the terms from Eq. (26) could be alternatively

expressed approximately as

cos(nt + e1) , exp[-w st]cos (1 -r2 Wst + 8)

and

exp[- wst] cos (N -- 92 st + 0' ) sin [(,4i.082- t2- 0.924i - t2) wst]

Now, sint ;t for small t; thus, the terms from Eqs. (27) and (26) will be nearly the same for

t < 84 minutes. This is true regardless of the value of the damping ratio t. Now, if t > i/2,

then by the time that t no longer approximates sin wbeat t, the quantity exp [-w st] is so small

that these terms can be neglected anyway. Thus, for

t< i/2 and all times t

or

t < 84 minutes and all t

we have

D - (S2 + 2 )2 (S2 + ZtsS + W2 2)  (28)

Under this assumption [Eq. (28)] the transfer functions of interest are (Fig. 3),
I i

xA6Ax(S) R (S+ tw) + 2

HAV(S) = 2 2)
HAA6Vx R[(S + tw) + Wd]

2 d]

- S
2  

2 + 2
Hae z  I 1 l 2

--w~w2
S + 2l~ C 1S(S2 + n2t)2

2 2 2 2
= 2 2 2 2 22S 2 W
(S2 +0 2) (S2 + 2t S + W) (S2 + f 2 )(S 2 +2rwS+ + s

S (02
H& (S) 2 t l2 ttt+ 2 2t

y S+ C(S 2 + fl2)

2 22

W2I s a s a

HAX, S 1 t2 S + 2 1~s 2 tO) 12+ 1( 2  s .

HZAzs  S S2 + Q 2 11 + SC (S 2 + 112 ) t21

= 2 2 2 2 2 2
I s 1~ t2 s(S + - 2) (S2 + 2ts S + Ws) (S + 2(S + sS +c

4 
s 

S 

2ft 

+
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H&A6 -A6HAA6A y - H 6 Ax HAA6V = 1 HX6V

o Wo2 t 2 2  + tt12
= 2 2 2 2x C1 S(S + 0 S +Q

o2 2__________________2owflo 2 S
2 2 2 2

S(S 2 + 02) (S2 + 2 wsS + W) (S2 + 02 (S 2 + 2 wsS + Wo)2

St 1 2  W2t 2 2
HAy $2 2 + C1 (S2 +0 )

2 2 2
_ _2_ _ 2 o s 2S 22

C (S2 +0 2) (S 2 + 2z oS + W)) (S2 + a2) (S 2 + 2rWS + W)2,2

W2t1 2  (52 + W2
HAAE 2 + 2 + t22z + CS(S + )

W2(S2 + oW) 2 2 S
2 2 2 2 2

C S(S +2)(S + S+co) (S +f) (S + 2wsS+ 2sW

H2(j 2 S(S) 2= 2 o2,2 = CIHAA6 A (S)
AX6y (S2 = R (S sS 2CoS+ W) x

2 S C

HAXV(S) = R 2 22 = CIHAA6V x(S)HASy (S2 + 2 wS +) x~s

5 s

in which

-r2w2 2 2
2o s = K W = (I- C) W2

We will also need to know the relationships among the variables 40 x y and z and the inputs

E , E and e . Transforming Eqs. (23), (24) and (25) and solving, we obtain:
x y

5 2 W2 WW
S2 +2 + )2 + )+ 2 2 C + (29)x - ( 2 + 2) (x + xo ) + S2 + 0 2 (y + yo +S(S2 + n2 ) ( z + zo) , ( )

S(S +) n+255 0

-_ _2 S Oj
+= (c + 2 2+) (-EZ+ O) ,(30)Y-(S 2 + a 2) x +  0°  +  02 (Ey + yo ) + S 2 + a2( z  z ) ,(0

W X X2 S $2 + W 
2

zS(S 2 +  +S(S2+ 02) z z o

in which 4xo' Oyo and 0zo denote the initial values of x y and @z respectively.
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E. Time-Domain Responses

Since our ultimate goal is to find a sampled-data model to represent the manner in which

the error propagates between discrete observation times, we will need the impulse responses

associated with the transfer functions obtained in Sec. III-D.

Let
1

FiIS) = SIS? + a )(S 2 + ZNsS+ ws)

and
i

F 2 (S) = 2 2 2 2Z
(S + 0 ) (S + ZCWsS + Ws)

We can obtain the desired impulse responses by means of the six transform pairs listed

below:

Fi(S)' b + d + 2 sin ft - t cos nt

+ exp[--t oti( :j sin wdt-- -cosWdt t >'o

SF (S) - acosflt + bsin t

+ exp-'wst] c CosWdt + d-- sin wdt t >0

S Ft(S) - -aO sin Ilt + b cos nt

+ exp[-wst ] -(d-2ctws cosdadt - - [cw 5(1-2

+ cts1 sinwdt} t >O 0

in which

-2[i + 2(1 - C?) (02/2z)
a= 3

1 + (i - 2C2) (n2/w2)
2

c -a

4C 2 - 1 - (I - o z + 8t 4 1 (0 2 /W 2

d 2
d=1

16



and
B ex p [ -- 8 t ]

Fz(S) -A cos Ot + -j sin f2t + 3 ((D(sin wdt + 2 cos adt

+ (3) t sinwdt + S t cos Wdt) t)O

exp [ - w st]
SF (S) - -AO sin Ot + B cos ft + e Msin wdt + G CosWdt

Zd

+ (2) t sinwdt + G t cosWdt) t >0

2 2exp [ - st]

S F?(S) - -Q 2 cos Ot - BO sin 12t + e w3  [(-w (5) + - W 0) sin wdt

+ (-ws Q + () +wd )) cos dt + (- s) ) -wd WI) t sinwdt

+ (- G® + Wd (2) t cos Wdt ] t 0

in which

1 t + 120t4 6~L [ 3 + (3- 60t 2 - 2  + 64 6 1

S s

C)- [ + (32-84 )

s 11sl

_ w 1 + u -2 (2 - 4t 2l

s S

S S

= 3 + 2t 2 + 02 (-- 15 + 40t?2 -  24 t 4

42

s s

_ + - ( -1 4 )

s  8

WS

=----11-+ --f (3 -t+4 ) 
,

17



Using these transforms, we obtain the required impulse responses. Where possible,

terms of the order of S2/1w/ 2 have been ignored with respect to one. For certain values of the

damping ratio t, some of the remaining terms in 22/u) may also be ignored. The reader should

remember that, because of the approximations made in Sec. III-D, these expressions, which fol-

low, are good for t < 84 minutes and all damping ratios, or all time and damping ratios greater
than 1/2: 2 w 2 ( . 2 2 2

hAXE (t) j cos st - C 2 sin nt + exp[-wt] sinwdt - 2t

tt ( - 2+ 4t) + C2( - 1-+ 8 2C 2 (3 sd d
5 4

_2 __ 242

+ w2[( tc os Wt + 2(2- 4t2 t sin ) t >
2 2

dw s
h'aX.EyM sin Ot + cos f t + exp [-w tst s sin wdt - Cos W dt

o~c s wdt)
+ -2t sincdt - 2 t cos W t > 0

d d 0 d

hAXE z(t) '"s coslt + C1 sinlt + exp[-gcwst ]  (- ) (9-
d

hI + C( 2n + i2 2 1) Win-1)

+-12 [(-1 + 7C2 -  t 4 + 4t6 - C 2 (-3 + 8t 4 sincwd

2 2

+ 2tw 1 dcosw dt w t sin udt -- 2 [(1 22)

2 2 )

2
+---- (t-8 + 8a)] Cos t 

t- sin

hAAc (t) - cos t + c sin t + exp[- st- sino t
x W \Ct d d

osw + -2 tsnw s2 tcsd t>
tcowd tCO
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Cos__ C2 +t (0 W2'0 [2(3 - 2
hAAE~~t) C o~ sin ilt + exp[w

S 2 4 2 1 W2  d

+ -R (2- 5t-2 - 2 t 4 + 4C6 ) sin (odt + "(J coswd t
2Z d~ ZT - CO5Wdt

S 6

s d~ s n dt -- ----- Yt Cos W t t > 0

h&A (z) 2 2 2-- - sin t-CZ [1-(1 + Z2 7' cos at

h ( ] -+ z(5-4t ) C2O s  C 2 nn(t + 4C2 )

+ exp[-3wst] 3sin wdt - 2 °dt

d t2

2 2

- t sin w dt + .. t cosWd) t > 0
d 

d

hA6A x(t) = R exp--w t] slnldt t >0

hAA6V (t) =- ( exp[-tw sidt +t >0

2 R dt sincdt + Os~dt coswdt)

2 2r 2

hAA6A(t) = o (- tw sin Wd + tsiw t+ W tCsW ) t 0

2 R w 3 s dt td sd n ad d d

2t ? (- sinw+n- w sdt + C t Cos Wdt) t >0
hAA6Vy Rw d

i i

hAA6A (t) = - ' hAA6A hAA6V (t) = - -CL hAX6V (t)
y I x y 1 x

hA6A (t) = ~- hAA6A (t) , hAA6V (t) = L h&A6V (t)
x 1 y x 1 y

We will also need the response of the system to initial conditions. We use the notation

Ox(t__)

Ox
0

to denote the response of (t) to an initial position of Ox of one unit. From Eqs. (29), (30) and

(31) of Sec. III-D, we have

Ox(t) 2 z

O = h x x(t) = + Cos at t >0

19



Ox(t)

-- h tt-

yo

X-(t) t C
YO= h 0yxxE t) = C 2 sin at t > 0

OX = h 0zxxf t) = C5ICZ(1 - Cos at) t > 0 ,

0

4) (t)

0M

= h (t) = -- C 2sin t t >0
YO yz
0M

*z(t)

= ho M = C 2 1 Ci cos t 0

-- o (t)=

AA Eqs ( ) -5 )], it follows tha

) h E h(=e (t) 2 y ,

0

OZ

From the fact that

At = h i'j = x,y,z

and the fact that de s 0 and th appear only as drives in the two differential equations for AX and

AA [Eqs. (15) and (16)], it follows that

hAXc.t) - jY

O0

and

0

Our time-domain description of the system now lacks only the sixteen quantities relating AX,

AX, AA and A*A to AA 0 , nA 0, AX and ZX 0. If we transform Eqs. (15) and (16), including the

terms AX etc., and solve, then by using the approximation for D used in Sec. III-D we obtain

X0= AAMt = exp[-tw I]Cos Wt + sin w t t>0
AA AA st ~ d W d Wd

20



&o = A'Ao -) W exp[- st] sin wdt t >0

2
= AA(t) exp[- wst (sinwdt- Wdt cosW dt) t >0

0 0 wd

AX(t) C 2 AA(t) C C 2f 2
t - - __ = - 2 exp[--a t] [--ws sin wdt + t(wd sin Odt

Ao o d

+ Ws d cosodt)] t >0

Also,

ZX(t) -dAX(t) , ( etc.

F. Approximate Time-Domain Response for t 4 84 Minutes

The time responses given in the preceding section (III-E) are cumbersome, to say the least.

If we consider times up to 84 minutes and are willing to make suitable approximations, these time

responses can be considerably simplified. There are two situations in which this short time ap-

proximation is applicable:

(i) When the length of time of the whole operation does not exceed 84 minutes.

(2) When by means of external measurements each of our seven variables
X, X, A,A,, Ox, Oyand 4 z is determined independently to an accuracy compa-
rable to that which the navigator can maintain for 84 minutes; a set of such
measurements is then used at least every 84 minutes to reset the navigator.

Below are listed the approximate time responses; those not listed can be assumed to be negligi-

ble with respect to the given terms. These approximations have ignored terms of O/Ws(a/w s

1/17) or smaller with respect to one.

- 'Eexp[-- s (coswdt + sinwdt) t >0

h AX6 V x (t) = exp[-Cw stj sin wdt t >0

t& exp[-wst] sin~dt t >0
h,6A x -

(t) = Rw>

h A (t) = -A 
t)  = p[ yt) t > 0

AVy(t) = -C e sinwdt t >0

hAA6A (t) = - R---iO exp[-tswt] sinwdt t > 0
y

4'x(t)
h (t) = ( = i t > 0

x x x00
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(tM

Oyy YO

h Mt z_
z Cz Oz tO

Ax t) = exp-w N t (Cos Wt+ i t

Ax dt+IWsinwdtsn w t >O

AA(t) - AX(t) AA(t) = AA(t)
AA AA

0 0

Ax~t (t) t) drXti AXt)=At) -q d [AAUt)I
aX AA dt LA!W A dtA

0 o o AX A a
0 0 0

G. Equivalent Discrete-Time System

Using the results of Sec. III-E or III-F (whichever set of responses is applicable), we can

now write the set of matrix equations which describes the error propagation between sample (ob-

servation) times. Let x(t) denote the seven-tuple column vector:

AA(t) x

AA(t) x

A A(t) x

OA(t) = x

Oz (t) = 7

Then,

7

I(t +T) -b7 7 X(t) + Z/i x'(t +T) ,(3Z)

in which

2



AN(T AMT) 1 &/X C (AAx(T) hACAy(T) hAE (T)

d AX(t) etc.
dt °  t=T

AA(T) AA(T) AA(T) AA(T) hAA x(T) hA
0 d A h* T hAE (T) hAAE z(T)

077 - etc.

d 0 x (T)  h (T) ht eCtc

o 0 0 h0y x(T) hy y(T) h yz(T)

0 0 0 0 hEzCx(T) hz Cy(T) h zCz(T)

and the term which appears in the kth row of x(t + T) is

xj = Th (71 Yjlt + T - ) dr

xkYj

j,k= 1,. 7

Y = 6V x Y2 = 6A x Y3 = 6V y Y4 = 6Ay, y5 = ex, Y6 = Cy' Y7 = cz

It should be noted that the second and fourth rows of 077 are the derivatives of the first and third

rows, respectively, the derivatives being evaluated at t = T as indicated. Similarly, we note that

hx (t) = dhxk,(t) k= 1,3 j = 1,2 ... , 7

Any impulses appearing in these derivatives must be retained in the impulse responses h4.Ay(t)

and hA Ay.(t).

Our Litimate goal is to be able to study the error propagation when we couple our inertial

navigator to external measurements in some optimum fashion. This problem seems to admit of

treatment most readily when viewed in terms of Kalman's formulation of the optimum filter prob-

lem. In order to make our model amenable to treatment via Kalman's method, we must be able

to express the inputs 2 (t + T) as the responses of linear (discrete) systems to white noise. Since

our estimation procedure will be based strictly on first-order statistics, we must ensure only that

the matrices

R (NT) = EZt (tJ NT) T } N = 0, *1, -2,.
ij tNT)

i, j 1, , ..... 7
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are the same for both our original inputs and the responses to the linear systems. We will assume

that the inputs e x(t), C y(t), z (t), 6V x(t), 6A x(t), 6V y(t) and 6A y(t) are all mutually statistically

independent. Thus we need consider the matrices R.. only for i = j, i = 1,2, . . ,7.
5 6 7 i

Consider first x 5 , x , x . We assume that

(T) = E{eilt)eilt + T)} = 27z exp[-vilTI] i = xyz (33)
11I 1

Thus, the j-k t h entry of Rc C4(NT) is

"2  H N
a. C.E HX- C N = 0

1 i k i

a 2rE H H +  exp[-viINTI N > 0 (34). X.E. X--£
1 j]l ki

2 H+ H exp [-v i I NT I N < 0
S X . X1 E
1 j fi k Ei

in which

Hx xi = h 5 To h ,((p,)xkci exp [-ii -, J dq 1 dqo2  (35)

H1 = 0 hx (p1 ) expf+vipl] dqj ( (36)jx jiE

ST
H i hx fi(V 1) exp[-vio1 1 dop, (37)

i=x,y,z j,k= 1,2,...,7

x I = A, xZ = AA, x 3 = AA, x 4 = &A, x 5  Ox' x 6 = *y' Y7 =z

Now, consider the representation

C.

x.ilt) = [wj(it) + Bjidi(t- T)] (38)

in which

d i(t) = a idi(t - T) + wi(t),

or

di(t) = Z wi(t- rT) (ai)m i = x,y,z (39)

m=0

The w's are all white random processes with zero mean, and the wi's are taken to have unit var-

iance. The variance of the w 's and the correlation between all the w's are left free for the time

being.
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Substituting Eq. (39) into Eq. (38) and noting that

wi(t)wj(t + NT) = wiwj6(NT) ( (40)

we obtain

xj (t)xk (t + NT) = rk(NT)

(w w f -. BjiBki N =0

= I(Bkia iiwj.w + B jB iaI N >0

B 

a''

(B..a-w w i /k NI N<0 (41)i Wkcii + I- ai

Our discrete white-noise-generated inputs will then match our original inputs if

-T

a = e 1 (42)
"11

a 71HjEiHkci = wjEwkCi + i--a. BjiBki (43)

1

2  - B+ = 1- B - (44)

1

2 H. H Bja w w + (45)

i je i B ki i1 -a.

1

The solutions to Eqs. (43), (44) and (45) are

Bji I=ciH , (46)

wiw a °(iH - / ' (4)31 je j 1  - a

2 J i ki

wjWke e a I-fj ik Hj.EiH) , (48)

i=x,y,z j,k= i,2 ... , 7

as can easily be verified by substitution. We can thus obtain equivalent discrete inputs for the

signals Ex (t), c yt) and cz M).

We now consider the inputs 5Vx(t), 6Ax(t), V y(t) and A y(t). Our analysis here will be

much easier, as we can assume that
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47

x
1

(t )  4 , + + (t -T) w1 (t - T) wi(t - T) = E Wj(t - T)
xx i ,YHy+Iy Hltl. sji

"oit) + t H- T) w(t - T) i Z ..... 7

i 77 
w s(t - T) Wn(t - T)

Wg(t - T) wy(t - T)

w,0t- T) -w,(t - T)

, xi ,, X2 x3 A, x4 iA

+ q 4+ 44t
n H+TC% C, y 7Ty HXCz X • x

6 
- Oy X

7

J 0 y, 8 V 0 , y IA.. Y3 ' IVy Y4  6Ay

0 0 n-zoT6 I y, Y7 IZ

X 0(t) L 0 0 't It -T) w40 It - T)I

+ T h dC

wtJ .  Z ik -- = kI44 1 1HJ Hk J+ S h x (oe do

k=i

ij, .2 . .7 J, I ,2. 7

m 1,2,3.4

7__ H HL Hm -

tZ4 in W- in

which which
i.:S 9,t0 (ik, .4,2..7

7 , . 7 m * 5,6,7

H
+

Cw IT [HT oSo. o

i,j = 8,9,0 j 2,,.7 x a" ' doidoz

Fig. 4. Summary of discrete-time error propagation. The components of 077 and the terms

H+ , H H. HkmI depend on position.
k' I km
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4Z

(yiyi T) = i exp[-vir] i= 1,2,34 ,

Yl = 6Vx, Y2 = 6AxI Y3 = 6Vy, = CAy

where Pi is large enough So that

T
S h (r) yj(t - T) dTo xkYj 3

is uncorrelated with

r T
S j (7)yj(t +NT -7dr

for

N #O0 , j = 1,2,3,4, k = 1,2. 7

Thus, these four inputs can be replaced by the discrete white inputs

Wkj , k = 1,2 . '.,.7; j = 1,2,3,4

w kw =m a k  Sh1) x V e x p [- v k l 9 1-  V 21]  d ~o l d ~ pkj nm

where

m =j n = k

= 0 otherwise

where

k= 1,2,...,7

j = 1,2, 31,4

Recall that we have assumed that 6V x , 6Vy, 6A x and CAy were statistically independent. In prac-

tice 6V and 6V will not be uncorrelated. This can easily be corrected by setting
x y

Wk8v Wvy hT (oT (h( P) Ravx6Vy ( (1 - 02) dqpjdqP2

x Jy 0 xkCVxI.l hj6y x y

j,k= 1, . 7

We now have all the information needed for our discrete-time model. This information is

summarized in Fig. 4. For operating times less than 84 minutes the impulse responses of

Sec. IIIF may be used; otherwise, those of Sec. III-E must be used. For picket ship operation

the components of $77 and the terms Hjm, H. and H H are constant. For normal ma-
rine operation the coefficients of the differential equations governing error propagation (15, 16,

23, 24 and 25) vary so little during a four-hour period that they can often be considered constant.

Hence, for T < 4 hours, $77 and the quantities H., H. and I H H can often be determined
t ejm jm km

at each sample time by using the given expressions with the appropriate values of CI and C2 In-

serted into the impulse responses.
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IV. ESTIMATION OF NAVIGATOR ERROR

A. Estimation Equations When Navigator Is Not Reset Following Each Observation

In developing our solution to the estimation problem we will make repeated use of two prop-

erties:

(1) Let x, and x2 be two random variables, and let 21 and A be the best lin-
ear estimates of x, and x2 , respectively, using tKe sm observed data
for each estimate. Then, the best linear estimate of axI + bx., again
using the same data, is

axi + bx -a 2 + b2

(2) Consider any fixed class F of functionals on some given data with the
property that any linear combination of functionals in F is again in F.
Let x be the functional in this class that is the best estimator of x.
Then, (x - 2) is uncorrelated with any functional of the given class,
that is,

E{(x- 2) f} = 0 feF, ZEF

In the above statements "best" is used in the minimum-mean-square error sense. Property (Z)

follows directly if we regard mean-square estimation as finding a projection in an inner product
space. However, for completeness, simple proofs of both properties are given in the appendix.

For convenience we take T, the time between observations, to be one unit. Then the model

for our process is

z(t) = H(t)x(t) + v(t) , (49)

x(t) = *(t)x(t- 1) + w(t- 1) , (50)

in which v(t) and w(t) are white and have zero mean. Since it suits our present purpose, we also

assume that w and v are uncorrelated. Now our estimator_2t is linear and may be written

0o

I(t) = Z A(k)(t- k) (51)

k=O

The sum in Eq. (51) actually extends back only over all past values of data; we use as the up-
per index for convenience. We now define

z*(t) = z(t)- , BkZ(tk)
k=1

such that E (z*t k} = 0; k =1, 2 ..... We can then express _(t) as

2(t) = C(t) z*(t) + Z Ck_(t-k) (52)

k=1

Now, because z*(t) is uncorrelated with all the z(t - k), k = 2, 2 .. the minimization equations
separate into two sets of equations, one involving only C and the other involving only the Ck'S.

Thus, the Ck'S can be determined independently of C and
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ECk;(t - k) = best linear estimate ofxV
k1given z(t -k), k=4,...

= best linear estimate of f(t)xt~l + t,

given z(t -k), k= 1,Z2.....

= 'b (t)R(t - 1) + 0 (53)

Equation (53) follows directly from property (1). Thus,

X(t) = C(t)z*(tM + co(t ~- 1) .(54)

Now, z* (t) is uncorrelated with f(t)2(t - 1);

and

t A t

N- AT4T (t) - B(t) 4b(t) j_1i 1ft

We assume that 4(t) and q 2 T are invertible; thus,

B(t) 2t ^ -,T -1 (t) .(55)

Now, from Eqs. (49) and (50)

A2T= H(t) Ax2$T + vRT$ -H(t) 2;2

= H(t) O(t) Xtj2 (56)

and from property (2) we have

2 (2 T - 2 T )0

or_____ ____

Substituting Eqs. (57) and (56) into Eq. (55), we obtain

B(t) = H(t) f(t) 2 2 ~ ) ~)(8

and
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We now need to solve for C(t). From property (2) we have

or

or

2izT 4(t) -1 C(t) Mt H(t) f(t) .(60)

Now, by Eqs. (49) and (50), we have

A =A-T T A T
AtJZ t At_ l~tH (.t) + AIY

A T HT~

A T [.T ()HT ()+ T HTM

A T 6T ()HT (2;t_ 2it-1(61)

We can express the covariance matrix of the error as

Mt 1 =(x-1- A -2T-

=-i - T - - AT

and thus

and

Sz~I T x(t - 1 ) 0T (t) H T(t) - (t - ) 0T (t) HT (t) .(63)

From Eq. (49) we also obtain

=X(t) H (T . (64)
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Also,

Zt Ht j'Ht vT T T T
yi()+ t H (t)+H(t)2iyt +v t y

= H(t) X(t) HT (t) + V(t) (65)

Tin which V(t) denotes vtt.Further,

T T T

+ 2i-14 (t) + t11 -

0 (t) X(t - 1) T (t) + W(t- 1) ,(66)

in which, W(t) denotes w ~TYV. Substituting Eqs. (63) through (66) into Eq. (60), we obtain

'bt)X~ -1)0T ()T(t) + W(t - 1) H T ()-0) t-1) T ()HT ()+0

x E,(.t - )4 (t) H T(t) = C(t) [H(i) 4(t) X(t - 1) T (t) H T(t) + H(t) W(t - 1

adXH T ()+ V(t) - H(t) 0(t) X(t - 1 -bT()H t + H(t) 4(t) E(t _ 1) 4DTt)Tt H t)(t) HT(t)J

C(t) = [W(t - 1) + D(t) I;(t - 1) -bT (t)]I H T(t) f{V(t) + H(t) (W(t - 1)

+ 0(t) E(t - 1) -bT (t) ] H T(t)} 1  
. (67)

Note that C(t) depends on E(t - 1); thus, in order to complete our recursive scheme, we must be

able to express E(t) in terms of C(t) and E(t - 1):

j;t)= A_ )(T _ T) T-

= X(t) - 2E!T CT ()+ x 4 T'~ ('rt) H "T M cTt) _ x 2T T (68)

Using Eqs. (64), (56) and (57), we obtain

T T - T~t T~t CT
E(t) = X(t) [I t tJ 4tR~t t I - H (t) C ) [1 (69)

and using (62) and (66), we obtain

2;(t) = { (t) X(t - 1) 0 (t) T + W(t - 1) - 4b(t) [X(t - 1)

-Z(t- 1)) -bT(t)} [I_- HT(t) CT(t)l

r't)= W~ 1 +O~)X~ -1) 4 T M I T t)CTt)(0

B. Estimation Equations When Navigator Is Reset Following Each Observation

The equations in Sec. IV-A were developed under the assumption that the estimate of the nav-

igator error was not used to reset the quantities in the navigator. Here we assume that, follow-

ing an observation, X~t is used to reset the navigator (either by resetting the navigator computer
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or both the computer and stable platform). If we use j(t - 1) to reset the navigator, then the

model for our error propagation becomes

z'(t) = H(t)x'(t) + v(t) , (71)

AIMt = Ct) [ x'I(t- 1) - R'(t - 1)] + w(t- 1) ,(72)

in which we have used primes to distinguish the quantities in reset operation from those in nor-

mal operation. The relations between these two sets of quantities are:

X,(0) = x(O) 2'(0) = _2(0) = 0

X,(,) = x(j) A,(1) = A(i)

x,(2) = ~ 2 ;[x(l) - (1)] + w_(1) = x_(2) - *(2) _(1)

Thus.

k'(2) = _(2) - (2) (1)

and

X'(3)= 4(3) [xX(Z) - _() + w()

= 4(3)[x(2)-()J + w(2) =K(3)- 4(3).j(2)

Thus,
j'(3) =: (3) - b(3) 2 (2)

In general,

x'(n) = x(n) - 4(n) 2 (n- t)

2i'(n) = x(n) - 4(n) 2 (n- 1)

and

z'(n) = H(n) x'(n) + V(n) = z(n) - H(n) 4(n) R(n - 1)

Substituting into

i(n) = C(n) [z(n) - H(n) *(n) _(n- 1)) + 4(n) (n - 1)

we obtain

2'(n) + 4(n) (n - 1) = C(n) [z'(n) + H(n) 4(n)_2 (n - 1) - H(n) 4(n) K_(n- 1)1

+ 6 (n) J(n - i

or

'(n) = C(n) z(n) (73)

The quantity C(n) is obtained exactly as before, since

I (n) = (x2; ') 'n

AT
'(n - - nt

= (_En - _i n ) (a_x n
) T = E(n)

The estimation scheme thus remains basically unchanged. The error is unchanged, as is the

basic computational complexity, in that we must still generate the matrices C(t) and E(t) in the

same recursive fashion. The estimator Eq. (73) is slightly simplified over Eq. (58).
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C. Summary and General Remarks

In summary, we have the two possible models

z(t) = H(t) x(t) + v(t) (Eq. (49)]

o(t) = (t)x(t - 4) + w(t - 4) , [Eq. (50)1

or

z'(t) = H(t)x'(t) + v(t) [Eq. (71)]

xl(t) = (t) [x'(t- 4) -g'(t- 1)] + W(t- 4) [Eq. (72)]

The two estimators are given by

2(t) = C(t) [z(t) - H(t) 4(t)R(t- 1)] + 6(t) k(t - 1) [Eq. (59)]

and

X"(t) = C(t) z(t) [Eq. (73)]

The matrix C(t) is determined by the pair of recursive relations

C(t) = [W(t - 1) + 4(t) Z(t - 1) 4T(t)] HT(t) {V(t) + H(t) [W(t - 1)

+ 4(t) ;(t - 1) -b (t)] H (t)} -  [Eq; (67)]

.(t) = [W(t- ) + b(t) .(t- 1) bT I [Eq. (7 0)

in which
AZ(t) = covariance matrix of the estimation error 2t -t

W(t - 1) = covariance matrix of the input w(t - 1)

V(t) = covariance matrix of the measurement error v(t)

Our computation starts with some value for Z(o). If the platform were initially perfectly
oriented and the initial position known exactly, then M(o) would be zero. This will not usually

be the case, and Z(o) will have toj be determined from the alignment procedure used. Knowing
Z(o), we calculate C(1) from E(o) via Eq. (67). Then Z(1) can be calculated from C(1) via Eq. (70).
This process can be repeated continuously and we obtain E(t) for t = , . in the process we

have determined C(t) and hence q(t). If f(t) is constant, i.e., 0(t) - 4, then the steady-statevalue
of 1; can possibly be obtained by setting L(t) = E(t - 4) and eliminating C(t) between Eqs. (67) and

(70).

This discussion concerning the steady-state value of E(t) naturally poses the question: Under

what conditions is the steady-state value of E(t) unique? Another point that requires an answer

is: When is the optimum estimator asymptotically stable? The asymptotic stability of the esti-
mator assumes importance because we do not wish small bias inputs, which have been neglected

in our analysis, to be able to cause arbitrarily large errors in our steady-state estimate. To
these questions Kalman5 provides the following answer, which is definitive but perhaps somewhat

cumbersome to apply.

Theorem (Kalman):

Let the system defined by Eqs. (1) and (2) be completely observable and completely control-

lable. Then
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6i

(1) The optimum estimator is uniformly asymptotically stable.

(2) All solutions corresponding to different choices of a covariance matrix Z(o)
converge uniformly to the same solution.

Kalman refers to the system defined by Eqs. (1) and (2) as completely observable if for every

vector P and every time t0 there exists a T(t0 ) and an unbiased estimator 11 of PTx(T), in which

fi is a linear function of z(t), t0 < t .< T. He calls this same system completely controllable if

there exists a forcing function w(t) which can take the system from rest to any desired state in a

finite time. For mathematically definitive conditions for complete observability and complete

controllability and a thorough discussion of the whole question, the reader is referred to Chap-

ters 15 and 16 of Ref. 5.

One further point deserves mention. The estimator described gives simultaneously the

minimum-mean-square error estimate of each component of x. Our concern may center on the

position estimate in some particular direction, say in the quantity x 1 cos e + x2 sin 0, and we

may wonder if it is possible to find another estimator which gives a better estimate of cos e x1 +

sin E x 2 . However, the estimate obtained using our estimator is cos 0 2 + cos 0 , which, ac-

cording to property (1), is the minimum-mean-square estimate of cos e x 1 + sine x 2 for the given

data. This property of our estimator is equivalent to a statement that the ellipsoid of concentra-

tion of our estimation error lies wholly within the ellipsoid of concentration obtainable by any

other linear estimator.
1

V. COMPUTATIONAL ASPECTS

In order to use the formulation presented in Sec. IV to find the optimum estimator or to solve

for the minimum possible estimation error, considerable machine computation is necessary in

almost all cases of interest. Some of the computations can be carried out on an analog computer,

but the use of a digital machine at some points is unavoidable. We review here the basic quanti-

ties that must be calculated.

In order to apply the formulas given in Sec. IV there are five basic matrices which must be

calculated: 4(t), W(t), H(t), V(t) and X(o). The first two of these are found from the description

of the inertial navigator, the second two from the description of the measurement process and the

last from the description of the initial alignment process.

In obtaining the matrices b(t) and W(t) there are 98 quantities which must be found. Forty-

nine of these are the response at time T of each of the seven basic error quantities (&A, AA,

A, A, 0 x' y ,z) to an initial unit displacement of each one of these same seven quantities.

The second 49 quantities required are the responses at time T of each of the above seven quan-

tities to a "unit impulse" excitation of each of the seven inputs ( 6 Vxo 6 Ax, oVy, 6 Ay, Ex, Ey, CZ).

These 98 quantities are given in Sec. III-E for all T. An approximate set, which can be used when

the time of the total operation does not exceed 84 minutes, is given in Sec. III-F. Fortunately, not

all of these 98 quantities are distinct; as pointed out in Sec. III-E, many of the quantities in the set

of 49 initial condition responses are identical to quantities in the set of 49 impulse responses. If,

for some reason, it is not desirable to use the responses given in Sec. III-E, they can be calcu-

lated in two ways. The first way would be to use a digital computer to numerically integrate out

the responses in accordance with Eqs. (15), (16), (23), (24) and (25). An easier way might be to

use an analog computer to simulate these five equations and find the desired responses by making

the necessary number of runs on the analog computer. In finding the impulse responses, any in-

put of duration less than 1/ 2 0 th of the smallest time constant of the system would be suitable.
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As shown in Fig. 4, 0(t) consists of a 7 X 7 matrix 077 plus several smaller arrays. The

expression for 077 is given in Sec. III-E in terms of the initial condition responses mentioned

above. Three of the remaining terms in 6(t) are the time constants of the correlation functions

of the gyro drifts and must be estimated. The other quantities in 6(t) are the H+ s. These must

be calculated by the integration in Fig. 4. This integration could be carried out by means of ei-

ther digital or analog equipment; it can also be performed analytically by hand, with perhaps a

reasonable amount of patience.

As shown in Fig. 4, the entries of the W(t) matrix are found by calculating the quantities H

H- and I H jmH km. The quantities H-, like the quantities H are found by a single integration

involving an impulse response, as indicated in Fig. 4. The quantities I H jmH km I involve a double
integration involving two impulse responses simultaneously. This double integration can be car-

ried out on a digital machine and, perhaps somewhat awkwardly, on analog equipment. It can

also be carried out by hand, but the task is so unwieldy that it would require an extreme amount

of patience and devotion to duty.

We can only indicate here how the matrix H(t) is obtained, since we have not specified the

method of taking measurements. We assumed that the measurements could be expressed as

r(t) = F[q(t) + x(t)] + v(t) , (74)

in which q(t) represents the true value of the seven quantities used to describe the navigator op-

eration. The function F must be found from the geometry of the situation. The matrix H(t) is

then expressible as

1Fi(s(t)) (7S)

ijt as i(t s(t) = q(t)

Equation (75) can be evaluated analytically or by a numerical differencing approximation. The

matrix V(t) must be found by an enlightened examination of the errors involved in the measure-

ments.

The matrix Z(o) can be estimated only by someone well versed in the procedures used to

align an inertial platform. For an introduction into the" many possible means of alignment, the

reader is referred to Chapter 6 of Ref. 4.

With the five matrices 4(t), W(t), H(t), V(t) and Z(o) available, the recursive formulas sum-

marized in Sec. IV-C can be employed. However, it should be mentioned that these formulas can

be written in various ways and the best choice depends on the problem. The following is a rear-

rangement of the basic formula that is not self-evident. Define

I(t) = E-it M (76)

then, in place of Eqs. (67) and (70) we have

I(t) = [ 0(t) I1 (t - i)# T(t) + W(t - 1) 1 + HT(t) V- 1 (t) H(t) (77)

For the actual estimator, Eq. (59) can be replaced by

1(t =I'(t){ [.(t) 1 '1(t- 1) T (t) + W(t - 1)]' 4(t)_R(t- 1)

+ HT(t) V- 1 (t) A(t)} (78)
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The necessary matrix manipulations needed to obtain Eqs. (77) and (78) are outlined in Statement 3,

Appendix A.t

The formulas of Sec. IV require, at each step, the inversion of a matrix whose rank equals

the number of measurements made (the number of components of z). Equations (77) and (78) on

the other hand, require the inversion of a matrix with rank equal to the number of states (the

number of components of x). In either case, matrix inversion is required and there are many

possible techniques available. Reference 7 is one of many sources.

In the case in which 4, W, H and V are constant, the steady-state value of E is the solution

of the equation

= F- FHT[V 4 HFH] HF , (79)

in which

TF = W + ]t T

This matrix equation results in a system of simultaneous quadratic equations which may be solv-

able by machine methods.

There is one potentially important technique for simplifying each recursive computation con-

siderably while possibly increasing the number of recursive calculations. Recall that the damp-

ing ratio t is zero if the velocity log is not incorporated into the continuous system. With t = 0,

the expressions for H+, H, I H jmHkm I and the entries of $77 simplify by almost an order of mag-

nitude. The information given by the velocity log can still be used in correcting position errors

by sampling the velocity-log signals at a rate twice the "bandwidth" of these signals. If the sam-

pling time T of our system is set equal to the time between velocity-log samples, then these sig-

nals can be incorporated in z(t) and used in an optimum manner to help obtain the estimate of x(t).

This procedure may also increase the over-all accuracy of the system, since the conventional

velocity-log damping does not necessarily employ the velocity data in an optimum manner.

tThe formulas can also be derived directly by using a line of development different from that in Sec. IV.
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APPENDIX A

DERIVATION OF CERTAIN PROPERTIES OF THE OPTIMUM ESTIMATE

AND AN ALTERNATE FORM FOR THE ESTIMATOR

Statement I:- Consider the data z(T), TES; let 21 denote the minimum-mean-square estimate
of x1 , given z(T), and 22 denote the minimum-mean-square estimate of x2 , given z(r). Let x ;

x ; z'(T), TeS be Gaussian random variables with the same covariance matrices as xi, x 2 and

z(T), TeS. Then

ax1 + bx2 = ax + bx = E fax1 + bx I z(T), TrES}

aE IE(T), CS) + bE {x, I z(r) ES)

AAax' + b2 = axi + bx2

Statement 2:- Let x be a random variable and let F be some class of functionals on the

given data. Let 2 be the functional of this class such that

26= E{(x-x) )is a minimum.

Let f be an arbitrary functional in F. Consider the estimate 2 + ef:

C + 66 = E {(x-- - cf) 2

: E {(x--)2) -Z E {f(x -)) + 2 E2(f2  ,

6 6 =--c E {f(x --k)) + ca E {f 2

The equation determining Xis

6610 =-ZE{f(x-x)) = 0 (A-I)

To show that x is uniquely determined by Eq. (A-I) and truly yields a minimum, note that for

x satisfying (A-i)

66=e€ E{fZ} 0 for f A 0

Statement 3:- Define

T

Then Eqs. (70) and (67) combine to give

E(t) = Q(t) - Q(t) H T(t) [V(t) + H(t) Q(t) H T(t)]-' H(t) Q(t)

Using the matrix identity*

(A + BD-tBT)"4 = A - -A - B(D+ BTA -B) - BTA-

* This identity can be derived by using the formulas for the inverse of a partitioned matrix. See Froenius' re-
lation in Ref. 7.
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we obtain

E-1 W = Q-1(t) + HT(t) v-1(t) Hit)

from which Eq. (77) follows immediately.

Similarly, for the predictor itself, Eq. (59) can be written

P(t =P(t) t(t) A_(t -- 1) + C(t) Alt) ,

where

P (t) = I - Q(t) HT(t) [V(t) + H(t) Q(t) HT(t) - H(t) E(t) Q' (t)

Now, by Eq. (70),

C(t) H(t) Q(t) =Q(t) - E.(t) ,

or, after manipulation,

Z- 1(t) C(t) H(t) Z 1.- M - Q(t) - i I H T(t) V-1 (t) H(t)

C(t) X -(t) H -T V-1(t)

Thus,

R_(t) = Z(t) [Q-1(t) * (t) 2(t - 1) + HT(t) V-i t)Mz(t)]

which is Eq. (78).
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